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Abstract

In the present paper the procedure to part a molecule into the ion-radicals and bonds, proposed
earlier by one of authors within the HF approach, is used. In this procedure the ion-radical
occupied orbitals are defined as solutions of HF equations for ion-radical in the basis of occupied
MO of the whole molecule. The bond orbitals are constructed to complete the functional space
span by the occupied MO of ion-radicals to the functional space span by occupied MO of the
whole molecule. In this approach it is easy to calculate the electron density of all ion-radicals
and bonds which sum to the total electron density of the whole molecule, the densities overlap
being taken into account. Hence the adiabatic potential of the molecule is expressed as a sum
of ion-radicals and bonds self-energies and of various intramolecular interaction energies.
The results of ab initio adiabatic potential calculations and its decomposition for several

carbon containing molecules, such as CH4, CH3Li, CH3F and C2H6 , which can be considered as
two ion-radicals connected with a single chemical bond, are presented here. The dependence
of adiabatic potential components on the bond length is analyzed and simple approximate
equations for them are generated. Besides, the electronic structure of ion-radical CH+

3 , common
for all calculated here molecules, is considered and its dependence on the molecular environment
is analyzed.

1 Introduction

The notion of chemical bond is very useful for the description of various properties of molecules.
Besides, chemical bond corresponds to geminal, the two-electron function, which is the next to
orbital, the one-electron function, in the group function method [1]. In the Hartree-Fock theory
the bond orbital is a non-canonical orbital (linear combination of canonical HF molecular
orbitals), localized in the vicinity of two atoms with the electron density maximum in between
these atoms. Bonds are responsible for the main part of the molecule cohesion and at the
same time bond orbitals are occupied by a small portion of molecular electrons, two electrons
at each single bond. Therefore with the help of bond orbitals the calculation and analysis of
the molecule adiabatic potential can be made more efficient and simple. It is more efficient
because of the great reduction in the number of electrons and it is simpler because each bond
mostly depends on the position of two atoms connected with this bond. In the quantum
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theory of many-electron systems the exclusion of the core states is usually done with the help
of pseudopotential [2, 3, 4, 5, 6]. In this respect the transformation to the core and bond
orbitals with subsequent retaining the bond orbitals only can be considered as a particular
case of pseudopotential theory specially designed for covalently bonded materials.
However, there is no unique a priori definition of the bond orbital. Bond orbitals are

usually obtained with the help of various post HF localization procedures, different localization
procedures resulting in different bond orbitals. Recently, a localization procedure convenient
to the adiabatic potential analysis was proposed by one of the authors [7]. In this procedure
the bond orbital is not localized directly. Instead, a localization procedure is applied to obtain
the ion-radical orbitals and then the bond orbital is calculated to complete the functional space
span by the occupied MO of ion-radicals to the functional space span by occupied MO of the
whole molecule. This procedure is applied here for the adiabatic potential analysis.
In the next section the method of generating the bond orbital is discussed briefly, then

in the section 3 the molecule energy decomposition is described, finally in the section 4 the
results of adiabatic potential calculations are presented and discussed.

2 Bond orbital

In this section the bond orbital generating method will be discussed in application to the
simplest case when a molecule can be considered as consisting of two closed shell ion-radicals
R1 and R2 connected with a single chemical bond b. It is not difficult to generalize the method
for more complex molecules. The bond is assumed to be assigned to the atom A1 in the ion-
radical R1 and to the atom A2 in the ion-radical R2. We also assume that each ion-radical has
an even number of electrons, 2n1 and and 2n2 respectively. The bond has two electrons, so the
total number of electron in the molecule is 2n = 2n1+2n2+2. The nuclei of every atom of the
molecule is assigned to the one or to the other ion-radical, the bond has only electrons. Hence
each ion-radical has positive charge +1 and the bond has negative charge -2. The ground state
of molecule is assumed to be the closed shells singlet state.
At the beginning the ground state electronic structure of the molecule is calculated within

one-determinant RHFmethod with appropriate AO basis and all occupied MO ψk, k = 1, · · · , n
are obtained. Then the electronic structure of each ion-radical is calculates twice. First, the
ion-radical is calculated in the RHF approximation with the same AO basis, which was used
for the total molecule calculations. This produce the orbitals φ0

k and the total energy E
0
R of the

single ion-radical. Second, this ion-radical is calculated similarly but with another basis, which
consists of occupied MO ψk of the whole molecule. Thus obtained occupied orbitals φk and
the total energy ER can be considered as orbitals and energy of the ion-radical in the molecule.
In other words, φk are the non-canonical MO of the whole molecule which correspond to the
ion-radical. The difference between ER and E

0
R is the ion-radical deformation energy under the

influence of the molecular environment. The difference between orbitals φk and φ
0
k describes

the corresponding ion-radical deformation itself.
The occupied orbitals φk, k = 1, · · · , n1 of ion-radical R1 in the molecule and φk, k =

n1+1, · · · , n1+n2 of ion-radical R2 in the molecule are assumed to be linearly independent. It
is really so except some pathological cases. After these orbitals are calculated the bond orbital
φb can be found. For this the density operator ρ̂0
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ρ̂0 =

n1+n2∑

j,k=1

|φj〉
{
S−1

}
jk

〈φk|, Sjk = 〈φj|φk〉

is used. It is evident that all φk, k = 1, · · · , n1 + n2 are eigenfunctions of ρ̂0 with the same
eigenvalue equal to 1. At the same time the trace of ρ̂0 is n1+n2 = n− 1. Therefore there is a
non-canonical occupied MO of the molecule which is the eigenfunction of ρ̂0 with eigenvalue 0.
This orbital, orthogonal to all occupied ion-radicals orbitals, can be considered as bond orbital
φb.

3 Energy decomposition

The considered ground state of the molecule is the one-determinant closed shells state and its
energy is a well known universal functional of the first order reduced density matrix ρ(r|r′). It
can be written as a sum of four terms

E[ρ,ℵ] = Ekin[ρ] + Een[ρ,ℵ] + Eee[ρ] + Enn[ℵ]

corresponding to the kinetic energy, electron-nucleus interaction energy, electron-electron in-
teraction energy and nuclear repulsion energy. The symbol ℵ here indicates the nucleus sub-
system of molecule. The kinetic and the electron-nucleus interaction energies are linear in ρ
whereas the electron-electron interaction energy is quadratic in ρ. With the obtained orbitals
of ion-radicals and bond the electron density of the molecule can be written as

ρ = ρ1 + ρ2 + ρ12 + ρb

where

ρ1 =

n1∑

k=1

φk(r)φk(r
′), ρ2 =

n1+n2∑

k=n1+1

φk(r)φk(r
′), ρb = φb(r)φb(r

′)

are ion-radicals and bond densities and

ρ12 = ρ0 − ρ1 − ρ2

is the correction due to the non-orthogonality of ion-radical orbitals. The nucleus are divided
between ion-radicals which can be conventionally written as

ℵ = ℵR1
+ ℵR2

Consequently one can calculate the self-energy of various parts of molecule

ER1
- self energy of ion-radical R1 : ER1

= E[ρ1,ℵR1
]

ER2
- self-energy of ion-radical R2 : ER2

= E[ρ2,ℵR2
]

Eb - self-energy of the bond : Eb = E[ρb, ∅]. (Bond contains no nucleus.)

ER1⊕R2
- self-energy of the union of ion-radicals R1 and R2 : ER1⊕R2

= E[ρ0,ℵ]
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ER1⊕b - self-energy of the union of ion-radical R1 and bond : ER1⊕b = E[ρ1+ρb,ℵR1
] (orbitals

of ion-radical R1 and bond are orthogonal)

ER2⊕b - self-energy of the union of ion-radical R2 and bond : ER2⊕b = E[ρ2+ρb,ℵR2
] (orbitals

of ion-radical R2 and bond are orthogonal)

Then the total energy of the molecule can be written as

E = ER1
+ ER2

+ Eb + Eint(R1,R2) + Eint(R1, b) + Eint(R2, b) + Eint(R1,R2, b) (1)

Here the interaction energies can be expressed with the defined above self-energies of various
parts of molecule

Eint(R1,R2) = ER1⊕R2
− ER1

− ER2

Eint(R1, b) = ER1⊕b − ER1
− Eb

Eint(R2, b) = ER2⊕b − ER2
− Eb

Eint(R1,R2, b) = E − ER1⊕R2
− ER1⊕b − ER2⊕b + ER1

+ ER2
+ Eb

The first three terms are the two-body interaction energies. The last term is the three-body
interaction energy. It would be equal to zero if orbitals of one ion-radical were orthogonal
to orbitals of another ion-radical. All terms in the equation (1) are well defined. However it
was found more convenient to decompose the molecule energy in a different way. For this the
ion-radical self-energy was written as a sum of the single ion-radical energy and its deformation
energy. Besides, all three species we divided our molecule into, namely ion-radical I, ion-radical
II, and bond, are charged and therefore there is the Coulomb tail in their interaction energy,
which makes problems in the extended systems and must be treated separately. Therefore the
ion-radicals interaction energy was divided into the long-range and short-range parts

Eint(R1,R2) = Elr(R1,R2) + Esr(R1,R2).

The short-range part was left in the energy equation explicitly, while the long-range part
together with the bond – ion-radical interaction energies and the three-body energy were
combined into a quantity which we refer to as the bond energy

Ebond = Eb + Eint(R1, b) + Eint(R1, b) + Elr(R1,R2) + Eint(R1,R2, b)

Hence the energy of the molecule was written as

E = E0
R1
+ E0

R2
+ Edef

R1
+ Edef

R2
+ Esr(R1,R2) + Ebond (2)

The long-range part of the interaction energy has no unique definition. Every distributed
in space charge (electron cloud or nuclei array) can be described with an infinite sequence of
multiple moments, hence the interaction energy can be expressed as an infinite sum of various
point multipoles interactions, multipoles being calculated with respect to a given reference
point. The division of the whole multipole expansion into the long-range and the short-range
parts is always conditional and any expression is open for discussion. In the present paper
only the interaction between point charges at reference points was included into the long-range
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part. The atoms A1 and A2 nucleus positions were taken for the reference points of ion-radicals.
For the The reference point, corresponding to zero dipole moment, was taken for bond. The
ion-radicals charges we denote as q1 and q2, the bond charge as qb.

4 Results and discussion

In this section the results of the adiabatic potential calculations are presented and discussed.
The following molecules were chosen as the test objects: H–CH3, Li–CH3, CH3–CH3, and
F–CH3. Each molecule was calculated as it was described in sections 2 and 3, and for all
of them the ion-radicals and bond densities, adiabatic potential and its constituents were
obtained. Then, the obtained densities and the total energy constituents were analyzed to check
how well the proposed procedure is justified. Besides some simple equations were generated
to fit various energy constituents for future applications.
As it is impossible to display all the obtained results, we chose the CH4 molecule to be the

representative object in the analysis. The other molecules behave similarly to CH4 so only the
final numerical results are presented for them.
The total energy and its constituents in the equation (2) are shown in Figure 1 as a function

of the bond length, which is the distance between nucleus of atoms A1 and A2 in ion-radicals R1

and R2 respectively. The points represent the calculated values, solid lines show the developed
approximations. The main energy constituents responsible for the molecule formation are
Ebond and Esr(R1, R2), the deformation energies are less significant. The Ebond itself has no
minimum. Using the sum Ebond + Esr(R1, R2) as an approximate adiabatic potential one will
obtain the equilibrium bond length 2.0 a.u and the energy at equilibrium position −1.095 a.u
. The corrections due to the deformation energy are 0.076 a.u. to the equilibrium bond length
and +0.1 a.u. to the energy at equilibrium. Such behaviour show us that ion-radicals obtained
with the proposed procedure are to a good approximation a rather tightly bounded units, so all
ion-radicals electrons can be excluded from the molecule electronic structure calculations, the
latter being confined to the bond electrons only. The equation for the bond orbital has been
developed in [7] and the solution of this equation will produce Ebond. The ion-radicals repulsion,
necessary to provide the stable state of the molecule, can be considered as a fixed potential
energy function to be added to the HF energy of the bond. The ion-radicals deformation
energy is a small correction.
Having this in mind we generates simple approximations for the ion-radicals short-range

interaction and deformation energies. The ion-radicals interaction energy and its short-range
and long-range parts are shown in Figure 2 as functions of the bond length. The short-
range part is closely related to the ion-radical orbitals overlap, the latter being well localized.
Therefore the oftenly used exponential function

Esr = Csre
−αsrz

was chosen as an approximation. Here z is the bond length. This approximation was found to
yield satisfactory results in all considered molecules, in spite of the fact that it approximates
the repulsion energy between groups of atoms and not between two single atoms. The obtained
values of parameters Csr and αsr for all considered molecules are given in the Table 1.
Next we consider the ion-radical deformation. As it was said above, the deformation energy

was found to be a small correction. However it is not negligible and needs analysis as the whole
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scheme is meaningful only if the ion-radical deformation is small enough. Various competitive
processes different for inner and outer ion-radical electrons are responsible for the ion-radical
deformation but most of them have similar response function which helps the parametrization.
The closed shells RHF method used here fails to correctly describe the chemical bond at large
interatomic separation and its results has physical meaning in the vicinity of the equilibrium
geometry only. Still for the deformation energy parametrization in this region one can use the
equation

Edef = D0 + (C0 + C1z)
2e−αz

where z is the bond length. Would this equation be valid up to infinity the parameter D0 will
be the energy difference between CH+

3 in CH4 and the single CH
+
3 . As it is, D0 is the parameter

which together with the rest of the equation for Edef reproduces the CH+
3 deformation energy

at the equilibrium geometry. This parametrization was successful in all considered molecules
except CH3F where the parametrization accuracy is rather poor. The obtained values of
parameters D0, C0, C1, and α are given in the Table 1.
Sometimes reasonable description of deformation can be provided by a simple model where

the deformation itself is described with a single parameter ∆, the self-energy of the deformed
state ∆2/2β is quadratic in deformation parameter and the energy in the potential causing
deformation ∆f(z) is linear in the deformation parameter. In this model

Edef =
β

2
f 2(z).

Hence from the dependence of the deformation energy on z one can extract the dependence
on z of the potential responsible for deformation. In our case the ion-radical deformation is
due to the joint influence of the bond and another ion-radical and the separation of f(z) into
these two interactions needs special analysis.
The set of molecules selected for calculations was chosen to investigate the dependence of

the ion-radical deformation on its molecular environment. For the quantitative description
the electron density of CH+

3 ion-radical in different molecules was calculated along two lines,
one corresponding to the bond between ion-radicals and another corresponding to the inner
bond of CH+

3 . The results are shown in Figures 4 and 5, the innermost 1s orbital of C being
excluded as it results in the same sharp narrow peak in all molecules. In these figures the region
is shown where the density change is the most pronounced. In this region the density itself is
comparatively small. From these figures it follows that the ion-radical deformation is small.
It corresponds to the diminishing the density in the region of the bond between ion-radicals
when the second ion-radical is changed from Li+ to F+ and to the increasing the density in
the inner part of CH+

3 , both in the region of the inner bond and in between the inner bonds.
In conclusion, the energy-driven localization enables one to decompose the molecule into

the ion-radicals and bond with ion-radicals being the comparatively tightly bounded objects.
The ion-radical electronic structure depends only a little on its molecular environment. At the
same time the ion-radicals interaction must be included in the molecule adiabatic potential to
provide the accurate equilibrium geometry.
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Figure 1: The total energy and its constituents in CH4 as a function of the bond length. The arrow
indicates the equilibrium bond length.
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Figure 2: Ion-radicals interaction energy decomposition: the Coulomb tail and the short range part.
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Figure 3: Ion-radical deformation energy in detail.

Table 1: Summary of the fitting parameters.

Property CH3–H CH3–Li CH3–F CH3–CH3

Csr 2.860 0.910 12.662 9.852
αsr 1.353 0.867 1.379 1.253

C3 0.000 −3.457 −14.641 −9.374
α3 0.000 2.733 2.518 1.975

D1
0 0.019 0.065 0.003 0.033

C1
0 −0.063 −0.133 0.916 0.731

C1
1 0.477 0.376 0.000 0.000

α1 1.323 0.957 0.987 0.769

D2
0 0.000 0.000 0.244a 0.033

C2
0 0.000 0.162 −7117.371a 0.731

C2
1 0.000 0.000 4135.459a 0.000

α2 0.000 1.221 8.151a 0.769

a Doesn’t really make sense since the fitting not converged.

In fact the F+ deformation energy can be expressed as the

Morse potential.

9



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

−3 −2 −1 0 1 2 3

E
le

ct
ro

ni
c 

de
ns

ity

Z (a.u.)

NOTE: C(1s) is ommited here

CH3−F
CH3−CH3
CH3−H
CH3−Li

CH3−Li
CH3−H
CH3−CH3
CH3−F

Figure 4: CH+
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